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ABSTRACT 

The problem of plane stagnation point flow with freestream turbulence is examined 
from a basic theoretical standpoint. It is argued that the singularity which arises from the 
standard K - 6 model is not due to a defect in the model but results from the use of an 
inconsistent freestream boundary condition. The inconsistency lies in the implementation 
of a production equals dissipation equilibrium hypothesis in conjunction with a freestream 
mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which 
does not reach such a simple equilibrium. Consequently, the adjustment that has been 
made in the constants of the €-transport equation to eliminate this singularity is not self- 
consistent since it is tantamount to artificially imposing an equilibrium structure on a 
turbulent flow which is known not to have one. 

This research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NASI-18605 while the author was in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

The calculation of stagnation point turbulent flows has a variety of important engi- 
neering applications in boiler tubes, gas turbines, and ramjet combustors. Most of the 
earlier work [1,2] on this subject was based on the use of algebraic eddy viscosity models 
that do not allow for the detailed calculation of the turbulence statistics which can play an 
important role in determining wall friction and heat transfer coefficients. Consequently, 
the most recent work on the subject has been based on the use of more sophisticated two- 
equation turbulence models of the K - e type which have the advantage of allowing for 
the direct calculation of the turbulent kinetic energy [3,4]. Unfortunately, a problem with 
a singularity in the turbulent kinetic energy has arisen when the traditional dissipation 
rate transport equation of the K - E model is applied to plane stagnation point turbulent 
flow. Strahle and his co-workers [3,4] introduced an ad hoc modification of the constants 
in the E-transport equation which eliminated this singularity. However, this readjustment 
of constants is somewhat unsettling since it yields an E-transport equation which is inca- 
pable of collapsing most of the homogeneous turbulence data that is commonly used to 
benchmark turbulence models. 

In this paper, it will be shown that the singularity in the turbulent kinetic energy that 
occurs when the standard K - E model is applied to plane stagnation point flows arises 
from the use of an inconsistent freestream boundary condition and not from a defect in 
the model. To be specific, this commonly used formulation of turbulent stagnation point 
flow is ill-posed since a production equals dissipation equilibrium hypothesis is used in 
the freestream in conjunction with a mean velocity field that corresponds to homogeneous 
plane strain - a turbulent flow which does not possess such an equilibrium solution. In ho- 
mogenous plane strain turbulence, the kinetic energy and dissipation rate grow unbounded 
with time. Hence, it will be shown that the ad hoc adjustment of the constants of the 
&-transport equation which has been used to  eliminate this singularity [3,4] is not self- 
consistent since it results in the imposition of an equilibrium structure (with a bounded 
turbulent kinetic energy and dissipation rate) on a freestream turbulence whose mean ve- 
locity field does not permit such a solution. The mathematical origins and implications of 

this inconsistency will be discussed in detail along with possible alternative formulations 
that are well posed. 
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2. THE K - MODEL AND STAGNATION POINT TURBULENT FLOWS 

The problem to be considered is that of plane stagnation point flow with freestream tur- 
bulence as shown in Figure 1. Outside of a boundary layer of thickness 6 ,  the mean flow is 
assumed to  be irrotational and incompressible with a background turbulence superimposed 
on it. This outer flow is taken to be of the form [3,4] 

where V, = Emi+Tj,j is the outer mean velocity which is non-dimensionalized. The mean 
velocity near the wall is a solution of the mean continuity and Reynolds equations which 
take the dimensionless form 

(2) 
au au - + - y o  
a x  ay  

where P is the mean pressure, Re is the Reynolds number, and rij is the Reynolds stress 
tensor. For simplicity, since it will not alter the critical conclusions to be arrived at  in this 
paper, we will consider the inner flow to be incompressible. The system of equations (2)-(4) 
for the inner mean flow E,i j  are not closed and must be supplemented with a turbulence 
model. In the K - E model, the Reynolds stress tensor is given by 

2 
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rij = --K6ii + ( 5 )  

where K is the turbulent kinetic energy, e is the turbulent dissipation rate, and C,, is a 
dimensionless constant which is usually taken to be 0.09. The turbulence quantities K 
and E are determined from modeled versions of their transport equations which, for the 
Lam-Bremhorst model [SI that was considered by Strahle and his co-workers [3,4], takes 
the form 

(6) 
a K 2 a K  a K 2 a K  

) + -(Cp--) + P - E 
a K  a K  1 

E--- + U- = -V2K + -(C,,-- a x  a y  Re a x  E ax ay E a y  

1 F- +u- = --.V2&+ -(--- ) + -(--- a x  a y  Re ax u, E a x  a y  u, E a y  

a€ a& 1 a C P K 2 &  a C P K 2 &  

(7) 
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where 

is the turbulence production; u,, C.1 and C,z are dimensionless constants which typically 
assume the values of 1.3, 1.45, and 1.90, respectively; and fi and fz are wall damping func- 
tions which vanish a t  the wall and approach unity far away from the wall [5]. Sufficiently 
far from boundaries, a t  high Reynolds numbers where the molecular viscosity can be ne- 
glected, the modeled transport equations (6) - (7) reduce to those of the more commonly 
used K - E model of Hanjalic and Launder [6]. 

The equations of motion (2)-(7) for stagnation point turbulent flows are solved subject 
to the boundary conditions 

a t  the wall y = 0, along with the freestream boundary conditions (for y + 00) 

All of the boundary conditions except for (11) can be obtained as a rigorous consequence 
of the Navier-Stokes equations assuming that a,?T and K are Taylor expandable near the 
wall. Boundary condition (11) is obtained by a production equals dissipation hypothesis, 
i.e., by assuming that 

P = &  (12) 

in the outer flow which is based purely on experimental observations for similar (although 
not identical) stagnating turbulent flows. 

It will now be shown that the outer flow boundary condition (11) is fundamentally 
inconsistent with the mean velocity field (1). This outer mean velocity has the following 
nonzero gradients 

and, hence, corresponds to the case of homogeneous plane strain turbulence (see Tucker 
and Reynolds [7] and Rogallo [8]). It is now well established that homogeneous plane strain 
turbulence does not reach an equilibrium state where production is balanced by dissipation. 
In fact, the turbulent kinetic energy, dissipation rate, and length scales grow monotonically 
with time in homogeneous plane strain turbulence.+ As an illustration, the time evolution 

+It is precisely this unbounded growth of the length scales in numerical simulations of homogeneous plane 
strain turbulence that force a termination of such computations after relatively short elapsed times [SI. 
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of the turbulent kinetic energy (non-dimensionalized by its initial value) taken from the 
direct numerical simulations of homogeneous plane strain conducted by Lee and Reynolds 
[9] is shown in Figure 2. These results are suggestive of a long-time exponential growth 
of the turbulent kinetic energy which has been postulated based on alternative arguments 
[8] (while the precise functional dependence has not been rigorously established, both 
experimental and computational evidence indicate conclusively that there is a monotonic, 
unbounded growth in time of the turbulence level). The commonly used K--E model (where 
Ccl = 1.45 and Cc2 = 1.90) properly mimics this behavior as can be seen in Figure 3. These 
computations, which were conducted using a Runge-K u t ta-Fehl burg numerical integration 
scheme, indicate that after an early decay (the turbulence was initially undergoing an 
isotropic decay), the turbulent kinetic energy grows monotonically and becomes unbounded 
in the limit as t --$ 00. It can be shown analytically that the long-time growth of kinetic 
energy predicted by the traditional K - e model is exponential. 

For a general homogeneous plane strain turbulence, with mean velocity gradients 

the K - e model yields transport equations for K and E which are given by 

dK -=c,---s K 2  2 - - E  

dt  e 

de e2 - = Cc1C,KS2 - Cs2-. 
dt K 

These equations can be manipulated into the alternative dimensionless form 

SK E 
- )K* 

dK* -- dt* - ('"c - SK 

d e  e 2  -(-) = C,(CCl - 1) - (Cc2 - 1) (-) 
dt* SK  SK 

where t* = St, K *  = K/Ko,  and 

E * E  - = (&) (,) SKO K *  
EO 

given that ( - ) o  denotes the initial value. Equation (18) has an equilibrium solution of the 
form 

SK 4 
(T), = (E) 

(in the limit as t* 4 00) where 
c c 2  - 1 
c c 1 -  1 

a =  
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which is approximately 2 for the standard K - e mode1.t Then, from equations (17) and 
(19), it follows that for t* B 1 we have 

(23) 

It is therefore clear that the traditional K - e’model predicts an exponential growth in 
time of the turbulent kinetic energy and dissipation rate where a structural equilibrium is 
reached with respect to their ratio - the turbulent time scale K / E  (in fact, S K / E  has a 
universal equilibrium in the limit as t 4 00 which is completely independent of the strain 
rate S and the initial conditions KO and E O ) .  

As shown above, the traditional K - E model (where Q > 1) predicts an exponential 
growth in the turbulent kinetic energy and dissipation rate for plane strain which is con- 
sistent with physical and numerical experiments. On the other hand, if we take C,1 = C,, 
as suggested by Strahle, et al. (3,4], the K - E model erroneously predicts a production 
equal dissipation equilibrium wherein both K and E approach a finite asymptote in the 
limit as t -+ 00. This solution is of the form 

1 
K ,  = - 

S G E W  
(24) 

where E ,  is bounded and is determined by the initial conditions and the strain rate (it 
can be shown that E , / E ~  = ( f l S K O / ~ O ) B  where p = Ccl/(Cel  - 1)). It is clear that if 
Eq. (24) is nondimensionalized it becomes identical to Eq. (11). 

Now, we will return to the problem of stagnation point flow. By a Galilean transfor- 
mation 

y = Uot (25) 

(where Vo is the characteristic mean velocity), the temporally evolving version of homo- 
geneous plane strain turbulence can be converted to a spatially evolving problem (in the 
coordinate y) governed by the equations 

dK K2S2 
dY e 

Uo- = cp- - & 

de E2 
Uo- = C,1C,KS2 - Cc2- 

dY K ’  (27) 
~ -~ 

$It is a simple matter to show that a is the equilibrium value of the ratio of production to dissipation. 
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This spatially evolving version of the problem (which is actually the way that the physical 
experiments are conducted [7]) has the same solution as the temporally evolving version if 
we set 

As before, the standard K - e model predicts an exponential growth of K and E in y 
which properly mimics the experiments; the modified K - e model where Ce, = C c 2  

erroneously predicts a production equals dissipation equilibrium where K and e approach 
finite asymptotes as y -+ 00 (see Figure 4). These results have a direct bearing on the 
stagnation point flow problem. The boundary conditions (10) - (11) must be matched in 
the limit as y --+ 00. This is usually accomplished by marching in the y-direction from the 
wall starting a t  y = 0 (see Figure 1). However, as can be seen from the previous analogy, if 
we march in the y direction from the wall with velocity UO, then the standard K -e model 
properly predicts an exponential growth in the turbulent kinetic energy and dissipation rate 

for yS/Uo > 1. If a free stream boundary condition is used where K ,  and e, are bounded, 
an ill-posed problem results; this arises from the inconsistency discussed above and not 
from a defect in the standard K - e model. 

Although the singularity in the plane stagnation point problem can be eliminated by 
setting Gel = Cel, it is highly undesirable to do eo since this results in a miscalibration 
of the K - e model for homogeneous turbulent flows to the point where qualitatively 
incorrect results can be predicted. Consequently, the specific quantitative results obtained 
from this alternatively calibrated K - e model for stagnation point flows are likely to be 
dubious. Rather than rendering the problem well posed by an inconsistent recalibration of 
the model, it would appear to  be preferable to consider an alternative formulation of the 
problem which is not intrinsically ill-posed. Such an alternative formulation would require 
an outer flow with a mean velocity field that is compatible with a bounded turbulent 
kinetic energy and dissipation rate which are statistically steady. One such example would 

this problem, the outer mean velocity is obtained by the superposition of a uniform stream 
I be stagnation point flow that arises about a semi-infinite Rankine solid (see Figure 5 ) .  For 

with a source located a t  point P (a velocity field that can be written in closed form). It is I 
l 

a simple matter to show that in the limit as r -+ 00 

I 
E , = U , ,  u , = o  (31) 
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for this flow. The mean velocity (31) has no spatial gradients, and hence no source for 
turbulence production; consequently any background turbulence will decay yielding equi- 
librium values of 

K ,  = 0, e, = 0. (32) 

in the limit as r 00. In addition, in the outer region of the turbulent boundary layer 
there will be a region where production is approximately balanced by dissipation so that 
(11) would be an appropriate boundary condition. No problems with singularities would 
arise with this alternative formulation of stagnation point flow. 
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3. CONCLUDING REMARKS 

It has been demonstrated in this paper that the problem of plane turbulent stagnation 
point flow, as it is usually formulated, constitutes an ill-posed problem. This ill-posed 
formulation arises since the outer mean flow corresponds to a homogeneous plane strain 
turbulence which has no simple equilibrium structure; the turbulent kinetic energy and 
dissipation rate grow exponentially with time. The standard K - E: model was shown to 
properly mimic this exponential growth in time of the turbulence intensity which is the 
source of the singularity in the stagnation point flow problem. Hence, this singularity is 
in no way due to a defect in the model but rather results from the use of an inappropriate 
boundary condition. 

There is no doubt that the singularity in the K - E model for stagnation point flow can 
be eliminated by setting Gel = Cez in the dissipation rate transport equation as suggested 
by Strahle and his co-workers [3,4]. However, in the opinion of the author, it is highly 
undesirable to do this since the recalibrated model yields completely erroneous results for 
most homogeneous turbulent flows (e.g., its prediction of a production equals dissipation 
equilibrium for plane strain and plane shear turbulence which is in contradiction to the 
results of physical and numerical experiments). An alternative formulation of the stagna- 
tion point flow problem based on a semi-infinite Rankine solid was discussed which is well 
posed (i.e., no singularities would arise from the implementation of boundary conditions). 
Of course, other alternative formulations of turbulent stagnation point flows exist which 
are also well posed (for example, flow past a circular cylinder or the three-layer model of 
Traci and Wilcox [lo] for plane stagnation point flow). It is true that these alternative 
formulations are not quite as easy to compute since a similarity solution may not exist. 
Nonetheless, if we are to  gain a better understanding of the physics of turbulent stagna- 
tion point flows, we must avoid making ad hoc adjustments in the constants of turbulence 
models which render incorrect predictions for simpler flows that are analogous. 
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Figure 1. Plane stagnation point flow. 
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Figure 2. Time evolution of the turbulent kinetic energy taken from the homogeneous 
plane strain numerical experiments of Lee and Reynolds [9] (SKo/eo = 38.5). 
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Figure 3. Time evolution of the turbulent kinetic energy for homogeneous plane strain 
predicted by the K - E: model (SKOIEO = 2). 
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Figure 4. Time evolution of the turbulent kinetic energy predicted by the modified 
K - E model (where Ccl = Cc2) for homogeneous plane strain: 
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Figure 4. Time evolution of the turbulent kinetic energy predicted by the modified 
K - E model (where C,1 = CeZ) for homogeneous plane strain: 
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Figure 5. Stagnation point flow for a semi-infinite Rankine solid. 
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